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Summary
Single amino acid substitution (SAAS) produces the most common variant of protein function

change under physiological conditions. As the number of SAAS events in plants has increased

exponentially, an effective prediction tool is required to help identify and distinguish functional

SAASs from the whole genome as either potentially causal traits or as variants. Here, we

constructed a plant SAAS database that stores 12 865 SAASs in 6172 proteins and developed a

tool called Plant Protein Variation Effect Detector (PPVED) that predicts the effect of SAASs on

protein function in plants. PPVED achieved an 87% predictive accuracy when applied to plant

SAASs, an accuracy that was much higher than those from six human database software: SIFT,

PROVEAN, PANTHER-PSEP, PhD-SNP, PolyPhen-2, and MutPred2. The predictive effect of six

SAASs from three proteins in Arabidopsis and maize was validated with wet lab experiments, of

which five substitution sites were accurately predicted. PPVED could facilitate the identification

and characterization of genetic variants that explain observed phenotype variations in plants,

contributing to solutions for challenges in functional genomics and systems biology. PPVED can

be accessed under a CC-BY (4.0) license via http://www.ppved.org.cn.

Introduction

Single amino acid substitutions (SAASs) are usually caused by

single-nucleotide variants in the coding region of a gene (Care

et al., 2007; Ng and Henikoff, 2006; Wang et al., 2012). Some

SAASs can affect normal protein function (defined as functional

SAASs), leading to obvious physiological or morphological

changes in plants (Li et al., 2012; Wang et al., 2016; Xu et al.,

2018). Large-scale diversity investigations of the various human

genomes, including malignant tumour genomes, reveal that

SAASs are the most encountered variants (Lek et al., 2016). As a

large quantity of SAASs is distributed throughout the whole

genome, it is challenging to identify functional variants from all

the substitutions, and distinguish large effect alterations with

other variant versions at the same position. However, tabulating

the effect of SAASs on specific proteins is a necessity for

annotating gene (and protein) functions and interactions, and

provides insights into the molecular basis of biological activity and

molecular mechanisms of complex traits (Kono et al., 2018;

Kovalev et al., 2018; Wang et al., 2012).

Traditional experimental methods can accurately assess the

effect of SAASs on protein function; however, these methods are

time-consuming, resource-intensive, and difficult to manipulate

(Ng and Henikoff, 2006). Moreover, data accumulation from

whole-genome sequencing and resequencing analysis in projects,

such as de novel assemblies for a pan-genome in rice (Zhao et al.,

2018), maize (Hufford et al., 2021), sorghum (Tao et al., 2021),

and the Arabidopsis 1001 genome project (Carlos et al., 2016),

has resulted in a substantial increase of SAAS numbers, which

further renders these traditional methods ineffective. To annotate

the SAASs in a high-throughput manner, one potential avenue is

the use of computational methods to predict the effect of SAASs

on protein function, prioritizing functional SAASs for subsequent

experimental assessment (Kovalev et al., 2018; Ng and Henikoff,

2006).

Many software programs have been developed to predict the

effect of SAASs on protein function in humans (Ng and Henikoff,

2001; Stone and Sidow, 2005; Capriotti et al., 2006; Chun and

Fay, 2009; Adzhubei et al., 2010; Choi et al., 2012; Wang et al.,

2012; Niroula et al., 2015; Hecht et al., 2015; Quang et al., 2015;

Tang and Thomas, 2016; Ioannidis et al., 2016; Alirezaie et al.,

2018; Chennen et al., 2020; Pejaver et al., 2020; Takeda et al.,

2020). These programs are linked to molecular variant databases,

such as dbSNP (Sherry et al., 2001), ClinVar (Landrum et al.,
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2018), UniProt (Yip et al., 2010), HGMD (Stenson et al., 2017),

OMIM (Amberger et al., 2014), SNPdbe (Schaefer et al., 2012),

VariBench (Nair and Vihinen, 2013), and VariSNP (Schaafsma and

Vihinen, 2015). Based on different prediction principles, existing

software can be grouped into three categories: calculation of the

conservative index of amino acids by aligning the query protein

with the target protein library; establishment of a machine

learning model with inputs of protein sequences, structures, and

post-translational modifications; construction of a hybrid method

with precalculated scores of SAASs (recorded in the dbNSFP

database) (Liu et al., 2015) as input features for machine learning

algorithms.

Few studies have focused on developing a method or pipeline

for predicting SAASs effect on protein function in plants owing to

the lack of plant SAAS resources collected from molecular

experiments (Kovalev et al., 2018). Although some software (e.g.,

SIFT, MAPP, and PROVEAN), developed based on human SAASs,

have been applied to predict altered protein function in plants

(Feiz et al., 2009; Günther and Schmid, 2010; Chen et al., 2012;

Mezmouk and Ross-Ibarra, 2013; Kuppu et al., 2015; Yang et al.,

2017; Krasileva et al., 2017; Kim et al., 2021), this distant cross-

species application has common undesirable aspects, such as low

predictive accuracy and contradictory prediction results. Thus, the

robustness of this approach cannot be maintained when applied

to SAAS detection in plants (Feiz et al., 2009; Kono et al., 2018).

Here, we designed a novel Plant Protein Variation Effect

Detector (PPVED) that predicts the effect of SAASs on protein

function in plants through accumulated experimental informa-

tion, (re)sequencing data, and advanced analytical algorithms

(Figure 1). PPVED is linked to a plant SAAS database, manually

constructed with multiple resources having experimental evi-

dence. After data processing, we built 4 individual and 11

ensemble models for classifying functional and neutral SAASs

using random forest (RF), extreme gradient boosting (XGBoost),

support vector machine (SVM), and feedforward neural network

(FFNN). Among these models, XGBoost performed best in the

model evaluation process and was selected as the core algorithm

in PPVED. To validate the predictive accuracy of PPVED, we used

three different datasets of SAASs, and compared PPVED with six

existing human database software. The results demonstrated the

high accuracy of PPVED in predicting the effect of SAASs on

protein function.

Results

A total of 12 865 plant SAASs were collected from
resources with experimental evidence

A plant SAAS database with 12 865 SAASs in 6172 proteins was

constructed with three different sources: UniProt/Swiss-Prot,

NCBI/PubMed, and simulation calculation based on multiple

sequence alignments (Figure 1). The numbers of functional and

neutral SAASs identified were 6367 and 6498, respectively,

indicating balanced data gathering. For model learning and

inference, we split the overall dataset into two subsets with

random sampling: 80% in the benchmark dataset for model

learning versus 20% in the independent dataset for model

inference. The benchmark dataset was used for subsequent

feature extraction, feature selection, and model building, while

the independent dataset was used to assess the generalization

ability of the model. The proportions of subcategories (functional

and neutral) were generally balanced in each subset (benchmark

or independent).

Forty-eight informative features were selected from
1215 candidate features

A total of 1215 features, extracted through various computa-

tional methods, were used as input variables for predictive model

development. These features were classified into five categories:

sequence evolutionary features (5), physicochemical features

(631), database annotated features (31), predicted features

(328), and coevolutionary features (220). To reduce the feature

dimensions and avoid overfitting, 48 features from 1215 candi-

dates were selected using the three-step feature selection

pipeline proposed in this study (see Table S1 for the meaning of

each feature). We evaluated the model performance changes

before and after feature selection, and the results indicated the

performance after feature selection was significantly higher than

that before feature selection, demonstrating the utility of the

feature selection pipeline (Figure S1). Moreover, the efficiency of

model building also increased by nearly 30 times after feature

selection. We detected that at least two features were selected

from each of the five categories (Table S1). Sequence evolution-

ary features were retained in the largest proportion, although

only five items were initially collected (2/5, 40%). Physicochemical

features, which accounted for the largest part of all variables,

were kept as informative features in the lowest proportion (18/

631, 2.85%).

To determine the importance of each of the 48 features in the

predictive models, we adopted two strategies: keeping only a

single feature in the model or removing the single feature from

the full model that includes all 48 features. The results showed

that the importance indicator, the Matthew’s correlation coeffi-

cient (MCC), was larger than 0.2 for all features, demonstrating

the significance of selected variables (Figure 2a). Notably, almost

all physicochemical features had better MCC performance than

the other features (Figure 2a). Additionally, we found that when

removed from models, the single sequence evolutionary feature

caused the largest performance loss (Figure 2b). In the case of

removal of the features PSSM_FROM (position-specific score of

wildtype amino acid) and PSSM_TO (position-specific score of

mutant amino acid), MCC values decreased by 0.0146 and

0.0122, respectively. A one-tailed t-test revealed that the

reduction of MCC values was statistically significant (P < 0.05).

Moreover, we also found that the removal of all predicted

features caused the most severe performance loss compared with

removing other features categories. (Figure S2). Overall, the 48

features selected from the 1215 candidates were examined based

on feature importance analyses; they were all found to be

essential for building a predictive model. These features can

improve model performance and reduce computational cost as

compared with the full model.

Model evaluation selected the XGBoost algorithm for
PPVED

With 48 informative features, we built 15 machine learning

models based on 4 types of learning algorithms: RF, XGBoost,

SVM, and FFNN, which included 4 individual models and 11

ensemble models. The prediction results of ensemble models

were synthesized from multiple individual models using the

stacking method. The global performance of predictive models

was evaluated based on six indicators: sensitivity (SEN), speci-

ficity (SPE), precision (PRE), accuracy (ACC), MCC, and area

under the curve (AUC). After applying these models in the

benchmark dataset with 10,292 SAASs (Table 1) and the
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independent dataset with 2,573 SAASs (Table 2), we found that

the XGBoost-based model had the best global performance

compared with the other models. Although there were some

benefits, the ensemble models did not predict results that were

better than that of individual models. Specifically, when applied

to the benchmark dataset, the XGBoost-based model generated

the largest values of MCC (0.744), ACC (0.872), and AUC

(0.940), and comparable results for SEN (0.886), SPE (0.857),

and PRE (0.859) (Table 1). Using the independent dataset, the

XGBoost-based model generated similar prediction results,

demonstrating a robust generalization ability (Table 2). Owing

to the good model learning and evaluation performance, the

XGBoost algorithm was selected for PPVED to predict the effect

of SAASs on protein function for prioritizing the functional

variants.

PPVED surpassed existing software when applied to
SAASs in plants

We compared the performance of PPVED with the six most-

used software (SIFT, PROVEAN, PANTHER-PSEP, PhD-SNP,

PolyPhen-2, and MutPred2) that link to the human SAAS

dataset. Six indicators of global performance for each

software are listed in Table 3 for the benchmark dataset

and in Table 4 for the independent dataset. We further

visualized the model performance by plotting the receiver

operating characteristic (ROC) curve represented by the area

under the ROC curve (AUC; Figure 3). The AUC values were

remarkably high for PPVED, moderate for PROVEAN, SIFT,

PolyPhen-2, and MutPred2, and low for PhD-SNP and

PANTHER-PSEP in both datasets, demonstrating the good

Figure 1 Overview of this study to develop PPVED and use it to predict the effect of SAASs on protein function in plants. To develop PPVED, we first

collected plant SAAS dataset from three sources, including: UniProt/Swiss-Prot, NCBI/PubMed, and simulation calculation based on multiple sequence

alignments. Second, we comprehensively collected the features that characterize SAASs from five categories. Third, to reduce the dimension of features

and avoid model overfitting, we proposed a three-step feature selection pipeline and used this pipeline for feature selection. Then, we built 15 machine

learning models, including four individual models and 11 ensemble models based on 4 learning algorithms by using the selected features. Moreover, we

further selected six popular existing software developed based on human SAASs for performance comparison with PPVED. Finally, the prediction accuracy

of PPVED was proved through experiments on three proteins.
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predictive performance of PPVED. Besides AUC, other indica-

tors also manifested the advantages of PPVED; for example,

the ACC values were 10% higher than those from the

second-best software PROVEAN. The high values of all

indicators of model performance suggest that PPVED is a

powerful tool for accurately separating functional SAASs from

neutral ones in plant datasets.

Newly collected SAASs further validated the PPVED
generalization ability

More real genetic variants are required to further validate the

proposed model of PPVED. Therefore, we performed an assess-

ment of the generalization ability of PPVED using two different

datasets. First, we collected 314 functional SAASs that were

Figure 2 Importance evaluation of 48

features. (a) Performance of training

models by using only a single feature. (b)

The performance loss that removed the

single feature and used the remaining

features to train the models. A one-tailed t-

test showed that the reduction in perfor-

mance was significant upon removing the

single feature (P < 0.05). The above per-

formance was evaluated and represented

by Matthew’s correlation coefficient

(MCC).

Table 1 Performance comparison of 15 models in the benchmark dataset

Algorithm MCC ACC SEN SPE PRE AUC

RF 0.731 0.865 0.890 0.840 0.845 0.929

XGBoost 0.744 0.872 0.886 0.857 0.859 0.940

SVM 0.663 0.831 0.852 0.810 0.815 0.902

FFNN 0.648 0.824 0.837 0.811 0.813 0.891

LR(RF+XGBoost) 0.737 0.868 0.881 0.855 0.857 0.935

LR(RF+SVM) 0.721 0.860 0.873 0.848 0.849 0.929

LR(RF+FFNN) 0.722 0.861 0.874 0.848 0.849 0.929

LR(XGBoost+SVM) 0.737 0.869 0.881 0.856 0.857 0.934

LR(XGBoost+FFNN) 0.741 0.870 0.881 0.860 0.860 0.935

LR(SVM+FFNN) 0.663 0.831 0.846 0.816 0.818 0.903

LR(RF+XGBoost+SVM) 0.737 0.868 0.881 0.856 0.857 0.935

LR(RF+XGBoost+FFNN) 0.735 0.868 0.879 0.856 0.857 0.935

LR(RF+SVM+FFNN) 0.721 0.860 0.873 0.848 0.849 0.929

LR(XGBoost+SVM+FFNN) 0.738 0.869 0.881 0.856 0.857 0.934

LR(RF+XGBoost+SVM+FFNN) 0.736 0.868 0.879 0.856 0.857 0.935

ACC, accuracy; AUC, area under the curve of the receiver operating characteristic; FFNN, feedforward neural network; LR, logistic regression; MCC, Matthew’s

correlation coefficient; PRE, precision; RF, random forest; SEN, sensitivity; SPE, specificity; SVM, support vector machine; XGBoost, extreme gradient boosting.
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newly added to the UniProt/Swiss-Prot knowledge base. As none

of these SAASs were included in either the benchmark or the

independent datasets, they can be considered as another testing

set for validating the capability of PPVED to identify functional

SAASs. We generated the input features for these new SAASs

and predicted their effect on protein function. The results showed

that 274 out of 314 were accurately predicted, a promising

outcome demonstrating 0.873 predictive accuracy (Table S2). As

expected, the prediction results were highly consistent with that

shown in the independent dataset (Table 4, SEN = 0.874), thus

demonstrating the capability of PPVED to identify functional

variants. Specifically, four SAASs (R34A, S94A, W96A, and

E100A) on the disease resistance protein RUN1 (UniProt accession

number: V9M398) in Vitis rotundifolia were predicted as func-

tional with the protein being reported to affect NAD+ cleavage

activity (Horsefield et al., 2019). Moreover, two SAASs (K659E

and D773L) on leucine-rich repeat receptor protein kinase HPCA1

(UniProt accession number: Q8GZ99) in Arabidopsis were

accurately predicted and reported to be responsible for catalytic

activity loss (Wu et al., 2020).

Additionally, to validate the performance of PPVED for iden-

tifying neutral variants, 1515 neutral SAASs curated by a previous

study (Kono et al., 2018) were tested using PPVED. These neutral

SAASs have been adopted by another study (Kovalev et al., 2018)

and are therefore representative. The results indicated that 1262

out of 1515 were accurately predicted, and the prediction

accuracy was approximately 0.833 (Table S3). Similarly, the

prediction results were consistent with that shown in the

independent dataset (Table 4, SPE = 0.838). Overall, two addi-

tional datasets (functional and neutral SAASs) consistently

demonstrated the generalization ability of PPVED.

Predictive ability of PPVED experimentally validated in
three proteins

The short and swollen root 1 (SSR1) gene encodes a mitochon-

drial protein and is involved in maintaining the mitochondrial

Table 2 Performance comparison of 15 models in the independent dataset

Algorithm MCC ACC SEN SPE PRE AUC

RF 0.687 0.843 0.871 0.815 0.822 0.916

XGBoost 0.712 0.856 0.874 0.838 0.841 0.931

SVM 0.632 0.815 0.854 0.777 0.789 0.889

FFNN 0.627 0.813 0.844 0.782 0.791 0.889

LR(RF+XGBoost) 0.710 0.855 0.869 0.842 0.843 0.924

LR(RF+SVM) 0.677 0.838 0.856 0.821 0.824 0.916

LR(RF+FFNN) 0.679 0.839 0.855 0.824 0.826 0.916

LR(XGBoost+SVM) 0.714 0.857 0.871 0.842 0.844 0.925

LR(XGBoost+FFNN) 0.710 0.855 0.870 0.841 0.842 0.926

LR(SVM+FFNN) 0.635 0.817 0.844 0.791 0.798 0.893

LR(RF+XGBoost+SVM) 0.710 0.855 0.870 0.840 0.842 0.924

LR(RF+XGBoost+FFNN) 0.709 0.854 0.868 0.841 0.842 0.924

LR(RF+SVM+FFNN) 0.679 0.839 0.856 0.822 0.825 0.916

LR(XGBoost+SVM+FFNN) 0.714 0.857 0.871 0.842 0.844 0.925

LR(RF+XGBoost+SVM+FFNN) 0.708 0.854 0.867 0.841 0.842 0.924

ACC, accuracy; AUC, area under the curve of the receiver operating characteristic; FFNN, feedforward neural network; LR, logistic regression.; MCC, Matthew’s

correlation coefficient; PRE, precision; RF, random forest; SEN, sensitivity; SPE, specificity; SVM, support vector machine; XGBoost, extreme gradient boosting.

Table 3 Performance comparison of six existing software and PPVED

under benchmark dataset

Software MCC ACC SEN SPE PRE AUC

SIFT* 0.475 0.726 0.873 0.581 0.671 0.833

PROVEAN 0.547 0.773 0.774 0.772 0.769 0.826

PANTHER-PSEP† 0.356 0.681 0.756 0.594 0.681 0.704

PhD-SNP 0.442 0.720 0.679 0.761 0.736 0.720

PolyPhen-2 (HumDiv)‡ 0.527 0.762 0.868 0.642 0.733 0.835

PolyPhen-2 (HumVar)‡ 0.525 0.763 0.824 0.695 0.754 0.832

MutPred2 0.459 0.717 0.544 0.886 0.824 0.825

PPVED (XGBoost) 0.744 0.872 0.886 0.857 0.859 0.940

ACC, accuracy; AUC, area under the curve of the receiver operating

characteristic; MCC, Matthew’s correlation coefficient; PRE, precision; SEN,

sensitivity; SPE, specificity.
*For SIFT, 21 SAASs in the benchmark dataset cannot be predicted.
†
For PANTHER-PSEP, 5632 SAASs cannot be predicted.

‡
For PolyPhen-2, 778 SAASs cannot be predicted.

Table 4 Performance comparison of six existing software and PPVED

under independent dataset

Software MCC ACC SEN SPE PRE AUC

SIFT* 0.462 0.718 0.876 0.564 0.663 0.816

PROVEAN 0.512 0.756 0.761 0.751 0.749 0.817

PANTHER-PSEP† 0.346 0.676 0.765 0.574 0.675 0.718

PhD-SNP 0.433 0.716 0.686 0.746 0.726 0.716

PolyPhen-2 (HumDiv)‡ 0.534 0.766 0.866 0.653 0.738 0.836

PolyPhen-2 (HumVar)‡ 0.532 0.767 0.820 0.708 0.760 0.833

MutPred2 0.432 0.704 0.529 0.876 0.807 0.808

PPVED (XGBoost) 0.712 0.856 0.874 0.838 0.841 0.931

ACC, accuracy; AUC, area under the curve of the receiver operating

characteristic; MCC, Matthew’s correlation coefficient; PRE, precision; SEN,

sensitivity; SPE, specificity.
*For SIFT, 8 SAASs in the independent dataset cannot be predicted.
†
For PANTHER-PSEP, 1415 SAASs cannot be predicted.

‡
For PolyPhen-2, 181 SAASs cannot be predicted.
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electron transport chain function in Arabidopsis (Han et al., 2021;

Zhang et al., 2015). However, the mechanism of SSR1 in

regulating these biological processes remains unclear. To detect

suppressors of the knockout mutant ssr1-2, we focused on

protein candidates that may function to mask the short root

phenotype of ssr1-2 and used PPVED to predict the functional

SAASs for each candidate. Two mitochondrial proteins known to

participate in mitochondrial iron-sulphur (Fe-S) cluster biosynthe-

sis (Roche et al., 2013), HSCA2 and ISU1, were considered as

candidates for suppressor proteins by super bulked-segregant

analysis. Out of four SAASs in proteins HSCA2 and ISU1, three

mutational sites (ISU1A143T, ISU1G106D, and HSCA2G87D) were

predicted to be functional, and one (ISU1T55 M) was predicted to

be neutral (Table 5).

We conducted a wet lab experiment that introduces the

mutant gene in ssr1-2 to validate the effect of these four

mutational sites. The results proved that three of the four sites

were predicted correctly by PPVED, with ISU1A143T, ISU1G106D,

and HSCA2G87D displaying significant suppression of the short

root phenotype of ssr1-2 (Figure 4a). We further confirmed

protein activity change, exemplified by chaperone activity of

HSCA2 (Leaden et al., 2014). To conduct this experiment, we first

expressed HSCA2 and HSCA2G87D in frame with 6× Histidine and

3× Myc in Escherichia coli (Figure 4b) and detected purified His-

HSCA2-Myc and His-HSCA2G87D-Myc proteins by western blot

(Figure 4c). Then, the purified proteins were used to test general

chaperone activity in preventing heat-induced citrate synthase

(CS) from aggregation. As a result, both His-HSCA2-Myc and His-

HSCA2G87D-Myc significantly repressed CS aggregation, and His-

HSCA2-Myc displayed higher chaperone activity (Figure 4d).

Ethylene response factor 9 (ZmERF9) is a candidate gene

associated with phosphorus deficiency in a genome-wide asso-

ciation study (GWAS). The highest associated sites included two

single-nucleotide polymorphisms (SNPs) leading to two nonadja-

cent SAASs, and one indel near the EAR domain, which have

been reported to modulate transcriptional inhibitory activity (Ohta

et al., 2001). We quantified the transcriptional inhibitory activity

of ZmERF9 between two inbred lines DAN599 and CIMBL145 and

detected that ZmERF9DAN599 had a significantly higher level of

transcriptional inhibitory activity than ZmERF9CIMBL145 (Figure 4e).

We speculated that the higher level of inhibitory activity of

ZmERF9DAN599 might be caused by one of the associated SNPs

that have been detected in the GWAS. PPVED was used to predict

the effect of two SAASs on protein activities of ZmERF9.

Although ZmERF9R204Q and ZmERF9T211S were predicted and

experimentally validated to be neutral (the indel was also neutral;

Table 5, Figure 4e), these results confirmed that the causal

variants were not on the highest associated sites but somewhere

having linkage disequilibrium (LD) with these loci. Collectively, the

wet lab experiments validated the ability of PPVED with a 0.833

predictive accuracy.

Discussion

The characterization of the effect of SAASs on protein function is

of biological importance and can help provide a deeper under-

standing of the molecular basis of diseases and other complex

Figure 3 Receiver operating characteristic (ROC) curves of six popular existing software and PPVED in benchmark dataset and independent dataset,

respectively. (a) ROC curves under benchmark dataset. (b) ROC curves under independent dataset. The two models provided by PolyPhen-2, including

HumDiv and HumVar, were considered. The area under the curve (AUC) of the ROC curve was also showed in the figure.

Table 5 The prediction results of three wet lab experiments tested

proteins

Protein SAAS Predicted score Predicted class* Observed class

ISU1T55M T55M 0.244 Neutral Functional

ISU1A143T A143T 0.964 Functional Functional

ISU1G106D G106D 0.731 Functional Functional

HSCA2G87D G87D 0.999 Functional Functional

ZmERF9T211S T211S 0.018 Neutral Neutral

ZmERF9R204Q R204Q 0.001 Neutral Neutral

*When Predicted score ≥ 0.5, Predicted class is predicted to be functional, and

when Predicted score <0.5, Predicted class is predicted to be neutral (an

explanation of why 0.5 was used as the threshold is shown in Figure S4).
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traits (Kono et al., 2018; Kovalev et al., 2018; Wang et al., 2012).

Plant science significantly lags behind human science in the

development of databases for sharing variant information or tools

for detecting functional genetic variants and predicting their

effect on proteins or phenotypes (Amberger et al., 2014;

Landrum et al., 2018; Nair and Vihinen, 2013; Schaafsma and

Vihinen, 2015; Schaefer et al., 2012; Sherry et al., 2001; Stenson

et al., 2017; Yip et al., 2010). Until now, there has been no well-

curated SAASs or prediction tools specifically designed for plants

to characterize genomes for detecting substitutions that change

protein function. In this study, we introduced a plant SAASs

database containing 12 865 SAASs collected from multiple

Figure 4 The predictive accuracy of PPVED in three proteins. (a) Four SAAS mutants of ISU1 and HSCA2 were individually introduced in ssr1-2mutant, and

the short root phenotype of ssr1-2 was remarkably rescued. WS is a wildtype ecotype of Arabidopsis. ssr1-2 is a T-DNA inserted mutant containing the

wildtype ISU1 and HSCA2 genes. The top panel is the representative seedlings. The bottom panel is the statistical results of root length. More than 30

seedlings were measured for each sample. (b) Purified His-HSCA2-Myc, His-HSCA2G87D-Myc, and commercial citrate synthase (CS) and bovine serum

albumin (BSA) were isolated by SDS-PAGE gel electrophoresis and stained with coomassie bright blue (CBB). (c) Detecting purified His-HSCA2-Myc and His-

HSCA2G87D-Myc by western blot using anti-Myc antibody. (d) Heat-induced aggregation of CS was performed at 45°C for 90 min and monitored by

increased light scattering at 340 nm. The molecular ratios of CS to tested proteins are 1:2. BSA was used as control sample. (e) The transcriptional inhibitory

activity of different mutant sites was tested by yeast one-hybrid. Different ZmERF9 was fused with Gal4-AD and cloned into pGBKT7 to fuse with Gal4-BD.

The yeast cells harbouring indicated construct were grown on nonselective (SD/-Trp) and selective (SD/-Trp/-Ade/-His) medium to test the transcriptional

inhibitory activity. Cells were diluted in three concentrations from left to right. Fused Gal4-BD and Gal4-AD protein (BAD) is a transcriptional activator. A

pGBKT7-53 and pGADT7-T combination was used as a positive control (+). A pGBKT7-Lam and pGADT7-T combination was used as a negative control (-).

Partial amino acid sequence and mutant sites were showed in left panel.
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resources and presented PPVED as a machine learning-based web

service to predict the effect of SAASs on protein function. This

study contributes to plant science in many aspects, namely, aiding

discoveries of causal variants, providing application of machine

learning in solving biological questions, and storing and organiz-

ing useful molecular polymorphisms into a plant-specific data-

base.

Huge amounts of SNPs were generated from whole-genome

sequencing and resequencing projects (Carlos et al., 2016;

Hufford et al., 2021; Scheben et al., 2019; Tao et al., 2021;

Zhao et al., 2018). However, most SNPs lack experimental-level

evidence to support their functionality, which is unsuitable for use

as the training set to build the model in this study. Thus,

numerous functional SAASs, as well as a set of simulated

pseudoneutral SAASs, were manually curated for the develop-

ment of PPVED. Several previous studies (Bromberg and Rost,

2007; Hecht et al., 2015; Kono et al., 2018; Kovalev et al., 2018)

have simulated numerous neutral SAASs for predicting SAASs

pathogenicity through computational methods; for example,

~65% (26 840 of 41 174) of neutral SAASs were obtained by

simulation in the human SNAP database (Bromberg and Rost,

2007). Advances in prediction tools can facilitate accurate and

high-throughput screening of variants and accelerate the subse-

quent validation and annotation of variants in the future.

The implementation of machine learning in classification and

prediction of genomic variants has been advanced in recent years

and various supervised algorithms have been used to predict the

functional impact of these variants (Adzhubei et al., 2010;

Capriotti et al., 2006; Hecht et al., 2015; Niroula et al., 2015;

Pejaver et al., 2020; Quang et al., 2015; Wang et al., 2012).

Indeed, these algorithms have improved prediction accuracy and

generalization ability when compared with the classical method

of sequence conservation. Although a set of distinct algorithms

have been used to learn models for prediction, no single

algorithm consistently outperforms others and there is no

consensus on which algorithm is appropriate in predicting the

functional effect of SAASs. In this study, we presented three types

of machine learning algorithms (parameter-based, tree-based,

and ensemble) and compared their global performance in terms

of SEN, SPE, PRE, ACC, MCC, and AUC. Our results indicate that

tree-based algorithms (such as RF and XGBoost) are more suitable

than parameter-based algorithms (such as SVM and FFNN)

(Table 1 and Table 2). Consistently, more existing software has

applied tree-based algorithms, such as FunSAV (Wang et al.,

2012), PON-P2 (Niroula et al., 2015), REVEL (Ioannidis et al.,

2016), ClinPred (Alirezaie et al., 2018), InMeRF (Takeda et al.,

2020), and MISTIC (Chennen et al., 2020). Furthermore, we also

found that ensemble models cannot lead to better prediction

results compared with individual models.

Model assessment is necessary and can prove the generaliza-

tion ability and applicability of the model. In this study, three

various assessments were performed to verify the excellence of

PPVED. First, we compared PPVED with six previously reported

software in the benchmark and independent datasets, respec-

tively (Table 3, Table 4, and Figure 3). The results indicated that

PPVED had the best performance and was robust. However, most

of the software had certain defects, such as the high false-positive

rate of SIFT and the high negative rate of MutPred2. These results

are consistent with previous views that the transfer of knowledge

of distant cross-species has certain limitations (Feiz et al., 2009;

Kono et al., 2018). Second, we further validated PPVED using 314

newly collected functional SAASs and 1515 neutral SAASs. The

predictive accuracy was consistent with the benchmark or

independent datasets and reflected the generalization ability of

PPVED. Finally, we validated the predictive ability of PPVED

through wet lab experiments on three proteins (Table 5, Fig-

ure 4); the results were almost completely consistent with the

observations, suggesting the applicability of PPVED for detecting

functional genetic variants in plants.

Methods

Dataset

We manually curated a set of plant SAAS datasets, which

contained two subcategories: functional and neutral SAASs. The

functional SAASs were represented by physiological or mor-

phological changes (Kono et al., 2018). These SAASs were

obtained from three sources. The first was UniProt/Swiss-Prot

(https://www.uniprot.org, release 2019_10). We selected all

complete proteins classified as ‘Viridiplantae’ with mutagenesis

information from the UniProt/Swiss-Prot database and then

manually retrieved the mutagenesis annotations of these

proteins. We excluded non-SAASs, including insertions, dele-

tions, and multi-amino acid substitutions, and finally obtained

5751 SAASs. Of these SAASs, 4964 were functional and 787

were neutral. The second source of SAASs was NCBI/PubMed

(https://pubmed.ncbi.nlm.nih.gov). We retrieved literatures that

may be associated with plant SAASs from the NCBI/PubMed

database using a set of preset keywords (see Table S4). We

obtained 2468 SAASs, of which 2067 were functional and 401

were neutral. The third source of SAASs was simulation

calculation. Considering the unbalanced proportions of the

above subcategories, we referred to previous computational

methods; that is, we simulated a set of pseudoneutral SAASs

based on multiple sequence alignments (MSAs) (Kovalev et al.,

2018). First, we downloaded all complete proteins classified as

‘Viridiplantae’ in the UniProt/Swiss-Prot (library SP) and UniProt/

TrEMBL (library TR) databases. Next, we aligned each protein in

library SP with library SP+TR using BLASTP (Altschul et al.,

1990). We retained the hit proteins with sequence identity of ≥
95%. Then, the query protein was further aligned with the hit

proteins using Clustal Omega (Sievers and Higgins, 2014), and

the SAASs were filtered according to the following strict rules:

MSAs contained no less than three sequences; only two kinds

of amino acids could appear in each column; only one

substitution could appear in the cluster consisting of five amino

acids; and only one substitution could appear in the pairwise

alignment results (a detailed explanation of the filtering rules is

shown in Figure S3). Finally, the Needleman Wunsch algorithm

(Needleman and Wunsch, 1970) was used to further filter

SAASs that were repeatedly recorded. The threshold of

sequence identity was ≥ 95%. Finally, we obtained 5391

pseudoneutral SAASs.

We integrated the SAASs collected from the above three

sources and excluded SAASs with conflicting labels (functional or

neutral). In summary, we obtained a total of 12 865 plant SAASs,

of which 6367 were functional and 6498 were neutral. These

SAASs had a roughly balanced ratio of 1:1 and were evenly

distributed in 6172 proteins. We randomly selected 5094

functional and 5198 neutral SAASs as the benchmark dataset

(80% of the dataset) to build and tune the model. The remaining

SAASs, comprising 1273 functional and 1300 neutral SAASs,

were used for the independent dataset (20% of the dataset) to

validate the generalization ability of the model.
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To further validate the model, 314 newly plant functional

SAASs from the UniProt/Swiss-Prot (release 2020_05) database

were collected according to the above method. All datasets used

in this study can be downloaded from http://www.ppved.org.cn.

Notably, for each SAAS, we recorded the following detailed

information: source, organism, protein accession number, protein

sequence source database, protein sequence, wildtype amino

acid, mutant amino acid, mutation position, PMID of supporting

literature, supporting experimental evidence, and label.

Feature extraction

We comprehensively collected the features that characterize

SAASs, and these features were roughly divided into the

following five categories

Sequence evolutionary features

It is reported that evolutionarily conserved positions are fre-

quently associated with disease-related mutations in humans

(Miller and Sudhir, 2001; Wang et al., 2012), and some studies

have applied evolutionary information to predict SAAS

pathogenicity (Ng and Henikoff, 2001; Wang et al., 2012).

Therefore, we referred to a previous computational method (Ng

and Henikoff, 2001); PSI-BLAST (Altschul et al., 1997) was used in

generating a position-specific score matrix (PSSM) by aligning the

protein with the above library SP+TR. We collected the following

five features: (1) position-specific score of wildtype amino acid

(PSSM_FROM); (2) position-specific score of mutant amino acid

(PSSM_TO); (3) absolute value of the difference in the position-

specific score (PSSM_CHANGE); (4) substitution frequency of

SAASs in the alignment results (SFM); and (5) conservation score

of mutation position (CON_SCORE). The formula was as follows:

CON SCOREi ¼ �∑n¼20
j¼1 Pi,j log2Pi,j

where Pi,j is the frequency of amino acid j at position i.

Physicochemical features

The latest version of the AAindex database [https://www.

genome.jp/aaindex, v9.2] (Kawashima et al., 2008) stores

>700 kinds of physicochemical information of amino acids and

contains a total of three subdatabases (AAindex1, AAindex2,

and AAindex3). Some studies have also applied AAindex to

predict SAAS pathogenicity (Chennen et al., 2020; Niroula et al.,

2015). Therefore, we collected all physicochemical information

in AAindex and eliminated the entries comprising missing or

conflicting comments. Moreover, to ensure the accuracy of the

information, we also eliminated the entries annotated as

asymmetric matrices from AAindex2 and AAindex3. Finally, we

collected 631 physicochemical features in total, and all features

were named using the original accession number in the

AAindex.

Database annotated features

The UniProt/Swiss-Prot database stores numerous protein anno-

tations, such as protein structures, functions, and post-

translational modifications. Some studies have applied these

annotations to make predictions (Niroula et al., 2015; Wang

et al., 2012). We collected 25 annotations in total, which

belonged to five categories: (1) Function, which contained

BINDING, ACT_SITE, SITE, METAL, DNA_BIND, NP_BIND,

CA_BIND, and EC; (2) PTM/Processing, which contained LIPID,

DISULFID, MOD_RES, CARBOHYD, PROPEP, SIGNAL, and

TRANSIT; (3) Subcellular location, which contained TOPO_DOM,

TRANSMEM, and INTRAMEM; (4) Family&Domains, which con-

tained MOTIF, DOMAIN, REGION, and ZN_FING; and (5) Struc-

ture, which contained HELIX, STRAND, and TURN. We collected

more annotations compared with previous studies. Next, we used

these annotations according to the following rules: (i) we aligned

the protein to the UniProt/Swiss-Prot database using BLASTP and

found the best hit protein in the alignment results; (ii) we

corrected the position of SAAS in the hit protein according to the

alignment results and calculated the shortest relative distance

(SRD) between the SAAS and the annotations on the hit protein;

(iii) as some proteins lack some annotations, we merged all

annotations in each category (except EC) to reduce the effect of

the lack of annotations. Finally, we collected 31 database

annotated features in total, of which 25 were individual anno-

tations and 6 were merged annotations. For individual annota-

tions, the original abbreviation was directly used for the names of

the features; for the merged annotations, the names of the

features were as follows: FUNCTION_MERGE, PTM_MERGE,

SUBLOC_MERGE, FAMILY_MERGE, STRUCTURE1_MERGE, and

STRUCTURE2_MERGE. The following formulas were applied for

these annotations:

RDij ¼
position� annotationij
�� ��

length
, the ith annotation exists

1, the ith annotation does not exist

8<
:

SRDi ¼ min RDi1, RDi2,⋯, RDinf g

where position is the position of SAAS, annotationij is the jth

annotation position of the ith annotation, and length is the length

of the hit protein.

Predicted features

Some studies have revealed that other information, such as

protein secondary structure, solvent accessibility, and enzyme

function, is useful for SAAS prediction (Saunders and Baker, 2002;

Gao et al., 2015); however, these data are difficult to obtain for

plant proteins. Therefore, we extensively used software to predict

this information based on protein sequences, mainly including the

prediction of the following: (1) secondary structure and relative

solvent accessibility of proteins using SCRATCH v1.2 (Magnan and

Baldi, 2014); (2) disordered regions of proteins using DISOPRED

v3.16 (Ward et al., 2004); (3) protein aggregation using TANGO

v2.3.1 (Fernandez-Escamilla et al., 2004); (4) half-sphere exposure

of proteins using HSEpred (Song et al., 2008); (5) disulphide bonds

of proteins using DIpro v2.0 (Cheng et al., 2010); (6) protein

domains using DOMpro v1.0 (Cheng et al., 2006); (7) transmem-

brane helix and signal peptide of proteins using MEMSAT-SVM

v1.3 (Nugent et al., 2010); (8) nuclear localization signal of

proteins using NLStradamus v1.8 (Ba et al., 2009); (9) phospho-

rylation sites of proteins using NetPhos v3.1 (Blom et al., 2004);

(10) ubiquitination sites of proteins using UbPred (Radivojac et al.,

2010); (11) O-glycosylation sites of protein using NetOGlyc v3.1

(Steentoft et al., 2013); (12) N-glycosylation sites of proteins using

NetNGlyc v1.0 (Gupta and Brunak, 2002); (13) protein stability

changes upon single point mutation using I-Mutant v2.0.7 (Emidio

et al., 2005); (14) solubility of proteins using SOLpro (Magnan

et al., 2009); (15) enzyme function of proteins using EFICAz v2.5.1

(Kumar and Skolnick, 2012); and (16) subcellular localization of

proteins using LocTree3 (Tatyana et al., 2014). Finally, we

collected a total of 328 predicted features.
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Coevolutionary features

Coevolutionary features can be used to identify important

coevolutionary residues and have been applied in previous studies

(Wang et al., 2012), which are more likely to be rich in disease-

related mutations (Kowarsch et al., 2010). We used mutual

information (MI) to characterize coevolution using the following

computational methods: (i) we aligned the protein to the above

library SP+TR using BLASTP; (ii) to ensure MSAs will be large and

diverse (Simonetti et al., 2013), we selected N (100–1,000,
interval of 100) hit sequences for further multiple alignments with

the query protein using Clustal Omega; and (iii) we calculated the

MI between the wildtype amino acid of SAAS and the amino acid

of adjacent positions −4, −3, −2, −1, +1, +2, +3, and +4.
Moreover, the minimum, maximum, and mean MI in these eight

positions were calculated. We also considered whether there is a

gap in the alignment results. Finally, a total of 220 coevolutionary

features were collected. The calculation formula for MI was as

follows:

MI i, jð Þ ¼ ∑a,bP ai , bj
� �

log2
P ai , bj
� �

P aið ÞP bj
� �

where P(ai,bj) is the frequency of amino acid a at position i and

amino acid b at position j in the same sequence, P(ai) is the

frequency of amino acid a at position i, and P(bj) is the frequency

of amino acid b at position j.

In summary, we collected 1215 features that characterize

SAASs and standardized these features using the z-score method.

The standardization rules were as follows: (i) we standardized the

benchmark dataset and recorded the parameters of each feature,

including the mean and standard deviation (SD); and (ii) we

applied the parameters to the independent dataset, thereby

standardizing the independent dataset. The calculation formula

for the z-score method was as follows:

xz�score
ij ¼ xij � xi

σi

where xij is the jth value of the ith feature, xi is the mean of the ith

feature, and σi is the SD of the ith feature.

Feature selection

Feature selection can reduce the dimensions of features and avoid

model overfitting. However, it is extremely challenging to select

important and informative features from among numerous

features. Here, we designed a three-step feature selection pipeline

to select the optimal feature combinations for the prediction of

SAASs from the above 1215 features. In this pipeline, we used the

RF with default hyperparameters provided by the randomForest

v4.6-14 package to build the models. Notably, all RF models were

built by repeating stratified fivefold cross-validation 10 times. The

details of the pipeline are shown in Figure 5, and briefly described

below. We used the mean MCC of 50 models to evaluate the

performance of the RF models, as follows:

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ � ðTPþ FPÞ � ðTNþ FNÞ � ðTNþ FPÞp

where TP is the number of true positives, TN is the number of true

negatives, FP is the number of false positives, and FN is the

number of false negatives.

First stage of feature selection

We used individual feature to build the RF models, thereby

maintaining consistency between the number of models and

features. Then, we used the out-of-bag (OOB) error of the RF

models to exclude meaningless features, and the features (B in

Figure 5) of OOB error ≤ 40% were retained (see Table S5).

Second stage of feature selection

A heuristic-based genetic algorithm (GA) was used for feature

selection. In each iteration, we randomly selected a feature

Featuresingle from B and decided whether to include or exclude it

from Cj according to the state of Featuresingle. The above steps

were repeated until the performance remained unchanged after

500 iterations. Notably, the GA produced a local optimal solution

because of its strong randomness. To improve the possibility of

selecting the optimal feature combinations, we repeated the GA

500 times, yielding 500 sets of feature combinations (C1, C2, . . .,

C500).

Third stage of feature selection

Finally, a backward feature selection algorithm (BFSA) was used

for feature selection. Here, we only performed BFSA on the five

optimal feature combinations (C1, C2, C3, C4, C5) produced by

GA, from which an optimal feature combination (Cfinal) was

selected.

Model building

Previous studies have used various machine learning algorithms,

such as RF (Niroula et al., 2015; Wang et al., 2012), SVM

(Capriotti et al., 2006), and FFNN (Hecht et al., 2015; Pejaver

et al., 2020). Therefore, we also used four machine learning

algorithms, namely, RF provided by the randomForest v4.6-14

package, XGBoost provided by the xgboost v0.90.0.2 package,

SVM provided by the e1071 v1.7-4 package, and FFNN provided

by the neuralnet v1.44.2 package. We tuned their hyperparam-

eters by repeating stratified fivefold cross-validation 10 times. For

RF, we tuned three hyperparameters, including ntree, mtry, and

nodesize; for XGBoost, we tuned nine hyperparameters, includ-

ing nrounds, max_depth, min_child_weight, gamma, subsample,

colsample_bytree, alpha, lambda, and eta; for SVM, we tuned

three hyperparameters, including kernel, gamma, and cost; and

for FFNN, we only considered a single hidden layer network

(Pejaver et al., 2020) with a backpropagation algorithm and

tuned three hyperparameters, including act.fct, hidden, and

learningrate. Considering the task complexity and runtime

efficiency of the prediction of SAASs, we only considered a

single hidden layer network, which is similar to previous studies

(Hecht et al., 2015; Pejaver et al., 2020). After determining the

optimal hyperparameters of each algorithm, we trained 1,000

models by repeating stratified fivefold cross-validation 10 times;

thus, the performance of each model was represented by the

mean of 50 submodels. We selected one optimal model from

these 1000 models.

Additionally, to validate the complementarity of the above four

algorithms for the prediction of SAASs and to further improve

model performance, we also built 11 ensemble models (logistic

regression [LR] with glm function in R) using the stacking method

based on the four algorithms. In summary, we built a total of 15

machine learning models, of which 4 were individual models and

11 (C2 4+C3 4+C4 4) were ensemble models.
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Performance evaluation

We used the SEN, SPE, PRE, ACC, MCC, and AUC as indicators to

systematically evaluate the performance of the models from

different aspects. AUC was calculated using the pROC v1.16.2

package (Robin et al., 2011), and the calculation formulas of

other indicators were as follows:

SEN ¼ TP

TPþ FN

SPE ¼ TN

TNþ FP

PRE ¼ TP

TPþ FP

ACC ¼ TPþ TN

TPþ TNþ FPþ FN

where TP is the number of true positives, TN is the number of true

negatives, FP is the number of false positives, and FN is the

number of false negatives.

Performance comparison

As it is quite difficult to find a prediction tool specific to plant

SAASs, we selected six types of popular existing software that

were developed based on human SAASs to compare their

performance with our methods. Performance assessment of each

existing software and PPVED used the same benchmark dataset

and independent dataset. Three types of software developed

based on sequence conservation (SIFT, PROVEAN, and PANTHER-

PSEP), and three that were developed based on machine learning

(PhD-SNP, PolyPhen-2, and MutPred2) were used. The two

models provided by PolyPhen-2, HumDiv, and HumVar were

considered. No software developed based on hybrid methods is

applicable to plants.

Online website

To ensure that our proposed models can be utilized, a user-

friendly online website was developed. We used Apache as the

web server and Perl as the backend language to write the

common gateway interface. The website operates on a 64-bit

CentOS Linux server with a basic configuration of eight cores and

32G. The homepage of the website is http://www.ppved.org.cn.

The user interface is shown in Figure 6a; users need to provide

three pieces of information to receive the prediction results:

protein sequence, amino acid substitution, and email. The results

included the predicted score and binary classification, and the

classification is predicted to be functional when the predicted

score is ≥ 0.5; the classification is predicted to be neutral when

the predicted score is <0.5 (an explanation of why 0.5 is used as

the threshold is shown in the Figure S4). Generally, the results are

sent within 10–20 min, as shown in Figure 6b. Notably, the

website only supports the submission of one SAAS at a time; thus,

if users need to make numerous predictions, they are encouraged

to download the local installation package provided by the

website.

Plasmid construction and plant transformation

All constructs and primers used in this study are listed in Table S6.

Briefly, for genetic complementation, the genomic sequences

that encode HSCA2G87D, ISU1T55 M, ISU1G106D, and ISU1A143T

were amplified and cloned from corresponding suppressor

mutants. All complementation constructs were based on the

binary vector pCAMBIA1300. Arabidopsis plants were

Figure 5 The three-step feature selection pipeline. We used individual feature to build the RF models, and then used the out-of-bag (OOB) error of the RF

models to exclude (OOB error ≤ 40%) meaningless features in the first stage of feature selection. We further repeated the heuristic-based genetic

algorithm (GA) for 500 times in the second stage of feature selection. The termination condition of GA was that the performance kept unchanged after

500 iterations. Finally, we performed backward feature selection on the five optimal feature combinations produced by GA in the third stage of feature

selection.
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transformed with the agrobacteria-mediated floral dipping

method (Clough and Bent, 1998). The transgenic plants were

screened on a hygromycin B-containing Murashige and Skoog

medium. The integration of the transgene was confirmed by

polymerase chain reaction (PCR).

Protein expression and purification from E. coli

His6-tagged protein expression and purification from E. coil were

carried out as described previously (Leaden et al., 2014). Briefly,

BL21 (DE3) bacterial strains with respective constructs were

cultured in LB liquid medium at 37 °C to OD600nm ≈ 0.5 and

then induced with IPTG at a final concentration of 1 mM for 6 h

at 28 °C. Cells were harvested, resuspended in buffer A (20 mM

Tris–HCl, 200 mM NaCl, 30 mM imidazole, and 1 mM phenyl-

methylsulfonyl fluoride [PMSF], pH 7.4), and then disrupted by

sonication. The suspensions were centrifuged at 10,000 × g for

15 min at 4°C. The supernatants of the His6-tagged proteins

obtained were incubated with 500 μL Ni Sepharose (GE

Healthcare 17-5318-06, U.S.A.) and then washed twice with

buffer A. The recombinant proteins were eluted with buffer B

(500 mM imidazole in buffer A). The eluents were further

applied to size exclusion chromatography with the Superdex 75

or Superdex 200 column with ÄKTA Purifier 10 FPLC system (GE

Healthcare).

In vitro chaperone activity assay

All the tested proteins and citrate synthase (CS) (Sigma, C3260,

USA) were dialyzed in 20 mM HEPES-KOH, pH 7.5, 150 mM KCl,

and 10 mM MgCl2 before being used for the heat-induced

aggregation assay. CS (500 nM) was prepared in a final volume of

150 mL 20 mM HEPES-KOH (pH 7.5) and 2.8 mM β-
mercaptoethanol with different amounts of tested proteins. The

Figure 6 Online service of PPVED. (a) User interface of PPVED. The users need to fill in three kinds of information, including protein sequence, amino acid

substitution, and the email to receive the prediction results. (b) Output example of PPVED. PPVED will output four kinds of information, including the

submitted protein id, the submitted amino acid substitution, the predicted probability score (the value is between 0–1), and the predicted binary

classification (functional: score ≥ 0.5; neutral: score <0.5).
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mixtures were loaded onto a 96-well microplate and heated at

45°C. Light scattering at 340 nm was monitored at 45°C in a

Synergy 4 spectrophotometer (BioTek) for 90 min. Control

measurements were performed with commercial bovine serum

albumin (BSA).

Transcriptional inhibitory activity test

Different allelotypes of ZmERF9 were fused with the Gal4-AD

sequence. Then, the fused fragments were cloned into pGBKT7

and further fused with the Gal4-BD sequence. Gal4-AD was

cloned into pGBKT7 to be fused with the Gal4-BD sequence,

resulting in the complete Gal4,which was used as a control.

The transformation was conducted according to the manual of

Yeast Protocols Handbook (Clontech). Primers and construc-

tions are listed in Table S6. The combination of pGBKT7-53

and pGADT7-T was used as a positive control (+). The

combination of pGBKT7-Lam and pGADT7-T was used as a

negative control (−).
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